Asymmetric gap junctional coupling between glial cells in the rat retina.

نویسندگان

  • K R Zahs
  • E A Newman
چکیده

Gap junctional communication between glial cells is thought to play a role in K+ spatial buffering, in the propagation of inter-astrocytic Ca2+ waves, and in glial-neuronal signaling. In the present study, we characterize dye coupling between astrocytes, and between astrocytes and Müller cells, in the isolated rat retina. Whole-cell patch recordings were obtained from retinal astrocytes and Müller cells and the cells filled with Lucifer Yellow and neurobiotin. Spread of Lucifer Yellow to two to ten neighboring astrocytes occurred in 90% of the astrocyte recordings. After fixation and incubation of the retina with fluorescent conjugated streptavidin, neurobiotin was seen to label clusters of 13-88 astrocytes, as well as > 100 Müller cells. In contrast, when Müller cells were filled with Lucifer Yellow and neurobiotin, both tracers were confined solely to the recorded Müller cell. The uncoupling agents octanol, halothane, and doxyl-stearic acid were tested for their ability to uncouple retinal glia in situ. All three agents eliminated the visible spread of Lucifer Yellow from the injected astrocyte and the spread of neurobiotin into Müller cells. However, only doxyl-stearic acid combined with octanol eliminated the spread of neurobiotin between astrocytes. These results demonstrate that astrocytes in the rat retina are coupled to each other and to Müller cells. The astrocyte-to-Müller cell coupling is asymmetric, allowing transfer of the tracer in the forward direction only. In addition, astrocyte-to-Müller cell coupling is more sensitive to the uncoupling agents tested than is astrocyte-to-astrocyte coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connexin immunoreactivity in glial cells of the rat retina.

The rat retina contains two types of macroglial cells, Müller cells, radial glial cells that are the principal macroglial cells of vertebrate retinas, and astrocytes associated with the surface vasculature. In addition to the often-described gap-junctional coupling between astrocytes, coupling also occurs between astrocytes and Müller cells. Immunohistochemistry and confocal microscopy were use...

متن کامل

Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.

The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to ...

متن کامل

Lack of Connexin43-Mediated Bergmann Glial Gap Junctional Coupling does not Affect Cerebellar Long-Term Depression, Motor Coordination, or Eyeblink Conditioning

Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43)...

متن کامل

Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices.

In the present study, we directly demonstrated electrical coupling between Bergmann glial cells (BG) and Purkinje neurones (PN) in acutely isolated cerebellar slices, prepared from 15 to 30 days old Sprague-Dawley rats. Electrical coupling between these two cells was identified by dual whole-cell voltage clamp, which allowed direct recording of junctional current. Whole-cell recordings from PN-...

متن کامل

Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS.

This review article summarizes early and recent literature on the structure, distribution and composition of gap junctions between astrocytes and oligodendrocytes, and the differential expression of glial connexins in adult and developing mammalian CNS. In addition to an overview of the topic, discussion is focused on the organization of homologous gap junctional interactions between astrocytes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 1997